ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Zoran Dragojlovic, Farrokh Najmabadi
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1152-1159
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A842
Articles are hosted by Taylor and Francis Online.
The rep rate of an inertial fusion energy facility depends on the time-dependent response of the chamber environment between target ignitions. The fusion burn following the target ignition releases large quantities of energy into the chamber. This energy should be removed and the environment should be returned to a quiescent state so that the new fusion target can be positioned for the next cycle. Understanding the hydrodynamic transport of this energy through the chamber fill gas is essential because the multidimensional geometry effects become important on the long time scale, as the fluid interacts with the vessel wall containing various beam access ports. This interaction affects several different modes of the chamber species transport, including convection induced by shock waves and secondary flow, molecular diffusion, electron conductivity and radiation. In order to investigate these phenomena, we have developed SPARTAN code as an assembly of algorithms that were the most suitable for an accurate treatment of the computational problem, such as shock wave resolution and tracking, underlying flow physics and complex wall geometry. This study demonstrates that the geometry effects are critical in affecting the flow during the first 50 milliseconds following the target ignition. Thermal diffusion by molecules and free electrons has only a moderate effect in reducing the temperature extrema and is not sufficient to cool down the chamber to the equilibrium with the chamber wall within 100 ms. Radiation of the background plasma was identified as the only transport mechanism that has approached to this goal, making the chamber environment more suitable for inserting the next target.