ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
B. A. Vermillion et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1139-1142
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A839
Articles are hosted by Taylor and Francis Online.
We are performing research and development to increase production quantity and yield for Inertial Fusion Energy targets for laser fusion. A key component of the laser fusion target is an approximately 4 mm diameter foam shell. To facilitate large-scale production, research into optimization of foam shell gelation and hardening times to reduce non-concentricity of the foam shell is underway. Additionally, we are examining methods to modify the current laboratory bench scale process for initial foam shell formation, various fluid exchanges, and sealcoat chemistry into a continuous process in collaboration with Schafer Corporation. The proposed process utilizes porous tubing sections to perform fluid exchanges in a long (200 m-1 km) continuous path of tubing extending from the triple orifice generator currently used to encapsulate and form the foam shell.Real-time process control has been applied to the triple orifice generator to control the diameter of the foam shell. The system makes use of a pair of photodiode sensors in a closed loop feedback control system incorporating a variable speed process pump. Empirical results indicate the process control loop is capable of identifying wet shell diameters to an approximate standard deviation of 80 to 90 m, on par with characterization results indicating true shell diameter standard deviations of 30-80 m.