ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Masumi Okumura, Kazuhisa Yuki, Hidetoshi Hashizume, Akio Sagara
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1089-1093
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | doi.org/10.13182/FST05-A832
Articles are hosted by Taylor and Francis Online.
In order to apply Flibe as a liquid blanket material, a heat transfer enhancement system is required because the Flibe is a high Prandtl number fluid. The purpose of this study is to visualize the detailed flow fields in the packed-bed tube, which is expected to be utilized for the heat transfer enhancement. The visualization inside the packed-bed tube from various angles is performed by using a PIV system with a refractive index matching technique. Pressure loss characteristics in the packed-bed tube whose sphere diameter is half the length of tube inside diameter are evaluated and it is found that a drag model could be suitable to estimate the pressure loss of the packed-bed tube.