ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
A. Ying et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1031-1037
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | doi.org/10.13182/FST05-A823
Articles are hosted by Taylor and Francis Online.
An engineering scaling process is applied to the solid breeder ITER TBM designs in accordance with the testing objectives of validating the design tools and the database, and evaluating blanket performance under prototypical operating conditions. The goal of scaling is to ensure that changes in structural response and performance caused by changes in size and operating conditions do not reduce the usefulness of the tests. Initially, constitutive equations are applied to lay out the basic operating and design parameters that dominate blanket phenomena. The suitability of these similarity criteria for the TBM design is then confirmed by comparing finite element predictions of prototype and scale model responses. The TBM design also takes into account the need to check the codes and data for future design use. Specifically, predictability of tritium production and nuclear heating rates in a complex geometry, tritium release and permeation characteristics under fusion environments belong to this category. We conclude that this engineering scaling design process has maximized the value of ITER testing.