ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
B. Tsuchiya et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 891-894
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A800
Articles are hosted by Taylor and Francis Online.
Radiation induced change in electrical conductivity of proton conductive ceramics (Yb-doped SrCeO3) have been investigated under 14 MeV fast neutrons in air at temperatures of 293 and 373 K. It was found that the electrical conductivity under neutron irradiation at 293 and 373 K gradually decreased with increased neutron fluence reaching a constant for neutron fluences above 2.0 × 1018 and 1.0 × 1017 n/m2, respectively. The decrease of the electrical conductivity may be associated with annihilation of sub-bands due to Ce4+ to Ce3+ conversion.