ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
S. Sharafat, N. Ghoniem, B. Williams, J. Babcock
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 886-890
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A799
Articles are hosted by Taylor and Francis Online.
Ceramic foam and cellular materials are being used in a wide variety of industries and are finding ever growing number of applications. Over the past decade advances in manufacturing of cellular materials have resulted in ceramics with highly uniform interconnected porosities ranging in size from a few m to several mm. These relatively new ceramic foam materials have a unique set of thermo-mechanical properties, such as excellent thermal shock resistance and high surface to volume ratios. Based on new advances in processing ceramic foams, we suggest the development of ceramic foams or cellular ceramics for solid breeders in fusion reactor blankets. A cellular breeder material has a number of thermo-mechanical advantages over pebble beds, which can enhance blanket performance, improve operational stability, and reduce overall blanket costs.