ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
S. Sharafat, N. Ghoniem, B. Williams, J. Babcock
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 886-890
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A799
Articles are hosted by Taylor and Francis Online.
Ceramic foam and cellular materials are being used in a wide variety of industries and are finding ever growing number of applications. Over the past decade advances in manufacturing of cellular materials have resulted in ceramics with highly uniform interconnected porosities ranging in size from a few m to several mm. These relatively new ceramic foam materials have a unique set of thermo-mechanical properties, such as excellent thermal shock resistance and high surface to volume ratios. Based on new advances in processing ceramic foams, we suggest the development of ceramic foams or cellular ceramics for solid breeders in fusion reactor blankets. A cellular breeder material has a number of thermo-mechanical advantages over pebble beds, which can enhance blanket performance, improve operational stability, and reduce overall blanket costs.