ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
E. Wakai et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 856-860
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A793
Articles are hosted by Taylor and Francis Online.
The dependence of ductile-brittle transition temperature (DBTT) on tempering time and temperature was examined for a martensitic steel F82H irradiated at 150 and 250°C to a neutron dose of 1.9 dpa in the JMTR. The heat treatment was performed at 750 and 780°C for 0.5 h after the normalizing at 1040°C for 0.5 h. The tempering time at 750°C was varied from 0.5 to 10 h. 1/3CVN specimens were used in this study, and the absorbed energies in the impact tests were measured as a function of temperature. DBTT of F82H steels irradiated at 250°C to 1.9 dpa was ranged from -23 to 25°C, and DBTT of F82H steels irradiated at 150°C to 1.9 dpa was ranged from 0 to 15°C. DBTT of F82H steels irradiated at 250°C depended strongly on temperature and time of tempering, and it tended to decrease with increasing yield stress. The effect of tempering conditions on DBTT was smaller in the specimens irradiated at 150°C. DBTT due to irradiation in the F82H steels irradiated at 250°C tended to decrease with increasing time and temperature of tempering.