ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
E. Wakai et al.
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 856-860
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A793
Articles are hosted by Taylor and Francis Online.
The dependence of ductile-brittle transition temperature (DBTT) on tempering time and temperature was examined for a martensitic steel F82H irradiated at 150 and 250°C to a neutron dose of 1.9 dpa in the JMTR. The heat treatment was performed at 750 and 780°C for 0.5 h after the normalizing at 1040°C for 0.5 h. The tempering time at 750°C was varied from 0.5 to 10 h. 1/3CVN specimens were used in this study, and the absorbed energies in the impact tests were measured as a function of temperature. DBTT of F82H steels irradiated at 250°C to 1.9 dpa was ranged from -23 to 25°C, and DBTT of F82H steels irradiated at 150°C to 1.9 dpa was ranged from 0 to 15°C. DBTT of F82H steels irradiated at 250°C depended strongly on temperature and time of tempering, and it tended to decrease with increasing yield stress. The effect of tempering conditions on DBTT was smaller in the specimens irradiated at 150°C. DBTT due to irradiation in the F82H steels irradiated at 250°C tended to decrease with increasing time and temperature of tempering.