ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
B. A. Pint, K. L. More, H. M. Meyer, J. R. DiStefano
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 851-855
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST05-A792
Articles are hosted by Taylor and Francis Online.
Current compatibility research in the U.S. focuses on two topics: dual- or multi-layer electrically-resistant Y2O3/vanadium coatings in a V-Li blanket concept and SiC composites with a Pb-Li coolant. The compatibility issue for multi-layer coatings includes the ceramic insulating layer and the metallic vanadium alloy layer. Characterization of Y2O3 coatings after exposure to Li shows significant changes in the microstructure. Initial static capsule results for V-4Cr-4Ti alloys in Li at 800°C showed unexpected small mass gains. Capsule tests of monolithic SiC in Pb-17Li showed no mass change and no wetting after 1000h at 800°C and only limited wetting after 1000h at 1100°C. Chemical analysis of the Pb-Li after the tests did not detect Si to the detectability limit of 30ppma (5wppm). In both liquid metal systems, loop tests with a representative temperature gradient are needed to truly determine compatibility limits.