ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. L. Walker, D. A. Humphreys, R. D. Johnson, J. A. Leuer
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 790-795
Technical Paper | Fusion Energy - Plasma Engineering, Heating, Current Drive, and Control | doi.org/10.13182/FST05-A783
Articles are hosted by Taylor and Francis Online.
The DIII-D tokamak is capable of supporting a wide variety of plasma equilibria because of its relatively large number of coils and their proximity to the plasma. To support its advanced tokamak mission, the DIII-D experimental program continues to push the envelope of this capability, frequently encountering limits imposed by allowable currents in poloidal shaping coils. Violation of current constraints is presently dealt with by operator adjustment of control targets and gains between plasma discharges. At the same time, demands for more precise and stable control have motivated efforts to develop and install advanced multivariable algorithms for control of plasma shape in DIII-D and other devices. There is currently no way to ensure respect of nonlinear current constraints in a multivariable linear controller design and no practical way to manually tune these fully coupled controllers between discharges after installation. Various linear minimization schemes can be implemented to encourage currents to remain within limits, but adherence to these limits cannot be guaranteed by linear methods alone. In this paper, we describe ongoing efforts to provide methods that guarantee currents will not exceed preset limits, and that simultaneously achieve the best obtainable quality of control subject to current limit constraints.