ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yoshi Hirooka, Hirotsugu Ohgaki, Souichirou Hosaka, Yusuke Ohtsuka, Masahiro Nishikawa
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 703-707
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST05-A767
Articles are hosted by Taylor and Francis Online.
In our previous work, the first proof-of-principle experiments were successfully conducted on the particle control capability based on the concept of moving-surface plasma-facing component (MS-PFC). Over a continuously titanium-gettered rotating drum, hydrogen recycling was found to be reduced down to levels around 94% even at steady state. These experiments on the MS-PFC concept have now been extended to the second stage where lithium is employed as the getter material, while using the same rotating drum. These experiments are intended to pilot the potential use of lithium as a flowing liquid facing the edge plasmas in steady state reactors beyond ITER. Reported in this paper are rather dramatic findings that hydrogen recycling is reduced down to levels around 76% and 86% at steady state over the rotating drum at the lithium deposition rates of 9.5 Å/s and 7.3 Å/s, respectively. These steady state recycling data have been nicely reproduced by a simple zero-dimensional particle balance model.