ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Reinhard Uhlemann, Jef Ongena
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 42-53
Technical Paper | doi.org/10.13182/FST99-A76
Articles are hosted by Taylor and Francis Online.
The neutral beam injectors of the tokamak experiment TEXTOR produce neutral particle beams in the megawatt range at 55 keV and up to a 10-s pulse length of the light atoms hydrogen, deuterium, 3He, and 4He for heating the fusion plasma of TEXTOR. The two injectors are equipped with one 5-MW ion source (plug-in neutral injector) each. The injected power of ~1.5 MW of each injector can be varied from 0 to 100% by opening the main beam target vertical aperture in steps of ~2 cm to the full opening of 50 cm. The symmetric truncation of the neutral beam profile at a target position 4.5 m from the ion source leads to no major deformation of the profile downstream at the entrance into the torus plasma at a 6-m distance from the ion source. Whereas usually the particle energy, i.e., acceleration voltage, and beam current or, alternatively, the gas pressure in the neutralizer at fixed energy must be varied to change the injected power, these beam parameters can be kept constant with the reported method to study the effect of different injected neutral beam powers on the fusion plasma. The transmitted power to the torus is detected by the calorimetrically measured remaining power on the beam target. The resulting transmitted neutral beam power as a function of the target aperture is in good agreement with the expected integral of the thus-truncated Gaussianlike beam profile, i.e., the error function. The scaling of the resulting injected neutral beam power, beam profiles, vertical full-width-at-half-maximum, and central power density with variation of the beam target aperture are in good agreement with the beamline simulation code PADET.