ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Guillaume Mignot, Mark Anderson, Michael Corradini
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 574-578
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | doi.org/10.13182/FST05-A747
Articles are hosted by Taylor and Francis Online.
The behavior of supercritical (SC) fluid during a blowdown is under investigation. A model based on a steady state Homogeneous Equilibrium Model (HEM) and conditions with and without friction is presented. Calculations indicating three different possible regimes in a blowdown scenario are calculated with this model. The single-phase flow in the supercritical region and the transition either into sub-cooled water, a two-phase fluid or a superheated gas near the critical point results in an interesting flow with a wide range of behavior. Depending on the initial conditions and the geometry either vaporization or condensation can occur either in the pipe or at the exit. In addition, these results are to be extended to other fluids like CO2, R22 or R134a by comparing thermodynamic properties and their dynamic evolution to dimensionless SC water results. Finally the design of an experiment with initial data on the depressurization of a supercritical water system is presented.