ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
C. P. C. Wong et al.
Fusion Science and Technology | Volume 47 | Number 3 | April 2005 | Pages 502-509
Technical Paper | Fusion Energy - First Wall, Blanket, and Shield | doi.org/10.13182/FST05-A734
Articles are hosted by Taylor and Francis Online.
As candidate blanket concepts for a U.S. advanced reactor power plant design, with consideration of the time frame for ITER development, we assessed first wall and blanket design concepts based on the use of reduced activation ferritic steel as structural material and liquid breeder as the coolant and tritium breeder. The liquid breeder choice includes the conventional molten salt Li2BeF4 and the low melting point molten salts such as LiBeF3 and LiNaBeF4 (FLiNaBe). Both self-cooled and dual coolant molten salt options were evaluated. We have also included the dual coolant leadeutectic Pb-17Li design in our assessment. We take advantage of the molten salt low electrical and thermal conductivity to minimize impacts from the MHD effect and the heat losses from the breeder to the actively cooled steel structure. For the Pb-17Li breeder we employ flow channel inserts of SiCf/SiC composite with low electrical and thermal conductivity to perform respective insulation functions. We performed preliminary assessments of these design options in the areas of neutronics, thermal-hydraulics, safety, and power conversion system. Status of the R&D items of selected high performance blanket concepts is reported. Results from this study will form the technical basis for the formulation of the U.S. ITER test module program and corresponding test plan.