ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Akito Takahashi, Katsuhiko Maruta, Kentaro Ochiai, Hiroyuki Miyamaru, Toshiyuki Iida
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 256-272
Technical Paper | doi.org/10.13182/FST98-A70
Articles are hosted by Taylor and Francis Online.
Anomalous enhancement of three-body deuteron fusion reactions was observed by low-energy D+ ion beam implantation experiment with titanium-deuteride (TiDx: x = 1.4) using a E-E charged-particle spectrometer. The enhancement ratio was ~1026, compared with the traditional theory estimation for a beam/target interaction of the random nuclear reaction process. Two characteristic charged particles of 4.75-MeV helium (3He) and 4.75-MeV triton from the reaction channel of 3D → t + 3He + 9.5 MeV were identified by the analysis of measured one- and two-dimensional spectral data. An experimentally obtained 3D fusion rate was on the order of 102 fusion/s, which is a surprisingly large value. Strong enhancement of 4D fusion was also indicated by higher-energy alpha-particle spectra.A possible explanation is given by the hypothesis of simultaneous multibody fusion induced with the coherent dynamic motion of three to four deuterons and many electrons around special focal points in a metal-deuteride lattice. The observed enormous enhancement of the 3D fusion rate suggests the possibility of "nuclear fusion in solid at room temperature," i.e., so-called cold fusion, which may open a new physics field between nuclear physics and solid-state physics.