ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
O. Neubauer, G. Czymek, B. Giesen, P. W. Hüttemann, M. Sauer, W. Schalt, J. Schruff
Fusion Science and Technology | Volume 47 | Number 2 | February 2005 | Pages 76-86
Technical Paper | TEXTOR: A Flexible Device | doi.org/10.13182/FST05-A689
Articles are hosted by Taylor and Francis Online.
TEXTOR is the Tokamak Experiment for Technology Oriented Research in the field of plasma-wall interaction. The scope includes a detailed analysis of particle and energy exchange between the plasma and the surrounding chamber as well as active measures to optimize the first wall and the plasma boundary region. TEXTOR is a medium-sized tokamak belonging to the class of moderate-field but large-volume devices having a circular cross section of the plasma and an iron core. The plasma major radius is 1.75 m, and the minor radius is 0.47 m. The maximum plasma current is 0.8 MA, the maximum field is 3 T, and the maximum pulse length is 10 s. TEXTOR is fed directly from the 110-kV grid using an installed converter power of ~300 MVA. The inner wall of TEXTOR is equipped with several specially shaped limiters being partly remotely movable. Special design features of TEXTOR are excellent access for diagnostics to domains near the wall, large portholes suitable for implementing methods to control the plasma boundary, facilities to heat the vacuum vessel and the liner, and provisions for exchange of the liner. TEXTOR has been upgraded with auxiliary heating systems (neutral beam injection, radio-frequency heating, and microwave heating of 9 MW in total), a toroidal pumped limiter, an upgraded magnetization coil, and recently the dynamic ergodic divertor (DED). The DED is a novel flexible tool to influence transport parameters at the plasma edge and to study the resulting effects on heat exhaust, edge cooling, impurity screening, plasma confinement, and stability. The number of special features and the flexibility of TEXTOR provide excellent opportunities for important contributions to fusion research.