ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
T. D. Akhmetov et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 167-170
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A631
Articles are hosted by Taylor and Francis Online.
The central solenoid of AMBAL-M was filled with a turbulent plasma stream generated by a source located outside the entrance magnetic throat, the plasma ~0.4 m in diameter, with density ~1.51013 cm-3, electron temperature ~50 eV and ion energy ~200 eV was obtained.Additional hydrogen puffing allowed plasma density increase. The plasma with a cold component from ionized gas and charge exchange ions was heated by electrostatic oscillations produced by the working source. At optimized gas puffing the plasma density was increased to 51013 cm-3 without substantial reduction of the ion temperature. No big differences in plasma properties were found between gas puffing through a gas-box and a ceramic tube.The plasma density increment was shown to depend only on the total amount of the injected gas. The experimental optimization was made for different values of solenoid magnetic field taking the diamagnetism into account.Neutral hydrogen distribution in the solenoid vacuum chamber and recycling rate were estimated from data of fast inverse magnetron gauges constructed in BINP.