ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
T. Numakura et al.
Fusion Science and Technology | Volume 47 | Number 1 | January 2005 | Pages 100-103
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST05-A616
Articles are hosted by Taylor and Francis Online.
Scaling laws of potential formation and associated effects are theoretically and experimentally investigated in the GAMMA 10 tandem mirror. In GAMMA 10, the main tandem-mirror operations from 1979 to 2003 are characterized in terms of (i) a high-potential mode having kV-order plasma-confining potentials, and (ii) a hot-ion mode yielding fusion neutrons with 10-20 keV bulk-ion temperatures. In this paper, the externally controllable parameter scaling including electron cyclotron heating (ECH) powers for potential formation covering over these two representative operational modes is investigated; that is, the construction of "the central-cell plasma-confining potentials" c formation scaling with plug ECH is studied on the basis of the electron energy-balance equation and Cohen's strong electron cyclotron heating (ECH) theory for investigating the formation physics of plasma confining potentials.It is found that our proposed scaling formulae are in good agreement with the experimental data in the two representative operational modes of the high-potential and hot-ion modes in the GAMMA 10 tandem mirror.This scaling shows a favorable increase in confining potentials with installing more powerful ECH sources by the use of ECH powers over the present 250 kW. On the basis of the scaling prediction, we also report the design of a newly developed 500 kW gyrotron for an application to investigate the validity of the abovedescribed c formation scaling with plug ECH aiming at achieving higher plasma parameters.