ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Victoria Hypes-Mayfield, Lyra Troy, David Dogruel, William Kubic, Joseph H. Dumont
Fusion Science and Technology | Volume 82 | Number 1 | January-February 2026 | Pages 420-430
Research Article | doi.org/10.1080/15361055.2025.2571383
Articles are hosted by Taylor and Francis Online.
Implementation of fusion energy requires processing the deuterium-tritium (D-T) mixture used to fuel the reaction, and separation of hydrogen isotopes from other gases is imperative. Specifically, the separation of hydrogen isotopes from helium is a matter of importance to the fusion fuel cycle community. Initial testing with a palladium-silver (Pd-Ag) membrane indicates that even moderate vacuum (~100 torr permeate pressure) can provide a high degree of separation (>90%) at a high ratio of H2 to He. Given the presence of He in many fusion systems, a high technology readiness level (TRL) for Q2/He (where Q represents any isotope of hydrogen) separations is needed. This study demonstrates the efficacy of H2 removal from He via permeation and potential applications for direct internal recycle. Modeling will accompany the experimental campaign to generate a predictive capability and quantify the separation performance. Modeling from previous hydrogen permeation studies has demonstrated that the typical Sieverts’ law fails to predict the measured permeation rates at high hydrogen fluxes. Existing models are being refined to integrate the effects of surface phenomena into permeation predictions, which have been expanded to account for mixtures with large ranges of Q2 concentrations. These data will improve the TRL of permeators as a separation technology for the fusion fuel cycle.