ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Minuk Jung, Amy Watterson, Gregory M. Wallace
Fusion Science and Technology | Volume 82 | Number 1 | January-February 2026 | Pages 106-121
Research Article | doi.org/10.1080/15361055.2024.2441621
Articles are hosted by Taylor and Francis Online.
The applicability of a heat pipe is investigated for the cooling of radio frequency antennas in fusion reactors operating at high temperatures. A heat pipe is a passive cooling device that transfers a large amount of heat through the liquid-vapor phase change and pumps the working fluid by the surface tension of the wick structure without moving parts. As the heat pipe is expected to operate near 1000 K, refractory metals or ceramics should be used for wall materials, and liquid metals are primarily considered as the working fluid. However, liquid metals are electrically conductive, and the strong magnetic field perpendicular to the flow direction imposes significant magnetohydrodynamic (MHD) flow resistance in addition to viscous friction, which impairs heat transfer performance.
Since a strong magnetic field is inevitable in magnetic confinement fusion reactors, materials with low electrical conductivity should be applied to wall coatings to reduce the MHD effect. Heat flux limitations at a magnetic field of 10 T and a condenser coolant temperature of 773 K are estimated using COMSOL multiphysics, which can capture the fully developed MHD wick flow, laminar/turbulent vapor flow, and heat transfer simultaneously. For simplicity, the generic heat pipe geometry of a straight horizontal cylinder with a length of 2 ft (0.6096 m) is employed. Optimal geometrical parameters are evaluated to meet radial evaporator/condenser heat fluxes greater than 0.1 MW/m2, even under a strong MHD effect.