ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
K. Ezato, M. Dairaku, M. Taniguchi, K. Sato, S. Suzuki, M. Akiba, C. Ibbott, R. Tivey
Fusion Science and Technology | Volume 46 | Number 4 | December 2004 | Pages 530-540
Technical Paper | doi.org/10.13182/FST04-A588
Articles are hosted by Taylor and Francis Online.
The first fabrication and heating test of a large-scale carbon-fiber-composite (CFC) monoblock divertor mock-up using an annular flow concept has been performed to demonstrate its manufacturability and thermomechanical performance. This mock-up is based on the design of the lower part of the vertical target of the International Thermonuclear Experimental Reactor (ITER) divertor adapted for the annular flow concept. The annular cooling tube consists of two concentric tubes: an outer tube made of CuCrZr and an inner stainless steel tube with a twisted external fin. Prior to the fabrication of the mock-up, brazed joint tests between the CFC monoblock and the CuCrZr tube have been carried out to find the suitable heat treatment mitigating loss of the high mechanical strength of the CuCrZr material. A basic mechanical examination of CuCrZr undergoing the brazing heat treatment and finite element method analyses are also performed to support the design of the mock-up. High heat flux tests on the large-scale divertor mock-up have been performed in an ion beam facility. The mock-up has successfully withstood more than 1000 thermal cycles of 20 MW/m2 for 15 s and 3000 cycles of >10 MW/m2 for 15 s, which simulates the heat load condition of the ITER divertor. No degradation of the thermal performance of the mock-up has been observed throughout the thermal cycle test although in the tile with exposure to the heat flux of 20 MW/m2, the erosion depth has been measured as 5.8 and 8.8 mm at the 300th and 500th cycles.