ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
A. Deoghar, S. Verma, A. Saraswat, A. Prajapati, S. Gupta, A. Patel, H. Tailor, A. Gandhi, S. K. Sharma, V. Vasava, R. Bhattacharyay
Fusion Science and Technology | Volume 81 | Number 5 | July 2025 | Pages 384-395
Research Article | doi.org/10.1080/15361055.2024.2431784
Articles are hosted by Taylor and Francis Online.
A dual-coolant heat extraction system has been designed, developed, and operated for extraction of the heat load from molten Pb-16Li in a thermo-fluid lead lithium magnetohydrodynamic experiment. The system uses the heat transfer oil Therminol 55 as a primary coolant that extracts heat from lead lithium in a Pb-16Li/thermic fluid (TF) heat exchanger (HX). The extracted heat load is further rejected to cooling water by a TF/water HX, in which demineralized water extracts the heat load from the hot heat transfer oil. In this system, the heat transfer oil is circulated in the loop at a nominal flow rate of ~35 liters per minute (lpm) and in the temperature range of 250°C to 270°C, while the water loop is operated at a nominal flow rate of ~30 lpm at room temperature. In the present study, the performance of the heat extraction system is tested to extract a heat load of ~24 kW continuously for the duration of ~100 h. During the experiment, the overall heat transfer coefficient, heat duty, and effectiveness of the HXs are validated with theoretical estimations. The present study discusses design and operation details of the system, along with the performance characteristics of the major components of the system.