ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
A. R. Raffray, L. El-Guebaly, G. Federici, D. Haynes, F. Najmabadi, D. Petti, ARIES-IFE Team
Fusion Science and Technology | Volume 46 | Number 3 | November 2004 | Pages 417-437
Technical Paper | ARIES-IFE | doi.org/10.13182/FST04-A581
Articles are hosted by Taylor and Francis Online.
The chamber wall armor is subject to demanding conditions in inertial fusion energy (IFE) chambers. IFE operation is cyclic in nature, and key issues are (a) chamber evacuation to ensure that after each shot the chamber returns to a quiescent state in preparation for the target injection and the firing of the driver for the subsequent shot and (b) armor lifetime that requires that the armor accommodate the cyclic energy deposition while providing the required lifetime. Armor erosion would impact both of these requirements. Tungsten and carbon are considered as armor for IFE dry-wall chambers based on their high-temperature and high-heat-flux accommodation capabilities. This paper assesses the requirements on armor imposed by the operating conditions in IFE, including energy deposition density, time of deposition, and frequencies; describes their impact on the performance of the candidate armor materials; and discusses the major issues.