ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Arife Seda Bölükdemir, Yeşim Olgaç, Ali Alaçakir
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 279-284
Research Article | doi.org/10.1080/15361055.2024.2379706
Articles are hosted by Taylor and Francis Online.
Studies on an inertial electrostatic confinement (IEC) device are generally focused on increasing particle production. One way to achieve this is to increase the number of ion sources. In this study, the deuterium-deuterium fusion reaction was carried out in the IEC Saraykoy Nuclear Research and Training Center (SNRTC-IEC) fusion device (previously at the Turkish Atomic Energy Authority, now reestablished as the Turkish Energy, Nuclear and Mineral Research Agency) at cathode voltage of 85 kV and pressure of 5 × 10−4 mbars, and the effect of ion sources and radio-frequency (RF) power on the neutron production rate was investigated. To ensure a high concentration of ions in the center of the cathode, three inductively coupled plasma deuterium ion sources were added to this device. As the number of ion sources increased from one to three, the neutron production rate increased from 2.3 × 104 to 3.6 × 105n/s. Two ion source configurations were used to examine the effect of RF power. It was observed that when the RF power was increased from 40 to 200 W, the neutron production rate increased linearly from 4.6 × 104 to 1.7 × 105 n/s.