ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Arife Seda Bölükdemir, Yeşim Olgaç, Ali Alaçakir
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 279-284
Research Article | doi.org/10.1080/15361055.2024.2379706
Articles are hosted by Taylor and Francis Online.
Studies on an inertial electrostatic confinement (IEC) device are generally focused on increasing particle production. One way to achieve this is to increase the number of ion sources. In this study, the deuterium-deuterium fusion reaction was carried out in the IEC Saraykoy Nuclear Research and Training Center (SNRTC-IEC) fusion device (previously at the Turkish Atomic Energy Authority, now reestablished as the Turkish Energy, Nuclear and Mineral Research Agency) at cathode voltage of 85 kV and pressure of 5 × 10−4 mbars, and the effect of ion sources and radio-frequency (RF) power on the neutron production rate was investigated. To ensure a high concentration of ions in the center of the cathode, three inductively coupled plasma deuterium ion sources were added to this device. As the number of ion sources increased from one to three, the neutron production rate increased from 2.3 × 104 to 3.6 × 105n/s. Two ion source configurations were used to examine the effect of RF power. It was observed that when the RF power was increased from 40 to 200 W, the neutron production rate increased linearly from 4.6 × 104 to 1.7 × 105 n/s.