ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Arife Seda Bölükdemir, Yeşim Olgaç, Ali Alaçakir
Fusion Science and Technology | Volume 81 | Number 3 | April 2025 | Pages 279-284
Research Article | doi.org/10.1080/15361055.2024.2379706
Articles are hosted by Taylor and Francis Online.
Studies on an inertial electrostatic confinement (IEC) device are generally focused on increasing particle production. One way to achieve this is to increase the number of ion sources. In this study, the deuterium-deuterium fusion reaction was carried out in the IEC Saraykoy Nuclear Research and Training Center (SNRTC-IEC) fusion device (previously at the Turkish Atomic Energy Authority, now reestablished as the Turkish Energy, Nuclear and Mineral Research Agency) at cathode voltage of 85 kV and pressure of 5 × 10−4 mbars, and the effect of ion sources and radio-frequency (RF) power on the neutron production rate was investigated. To ensure a high concentration of ions in the center of the cathode, three inductively coupled plasma deuterium ion sources were added to this device. As the number of ion sources increased from one to three, the neutron production rate increased from 2.3 × 104 to 3.6 × 105n/s. Two ion source configurations were used to examine the effect of RF power. It was observed that when the RF power was increased from 40 to 200 W, the neutron production rate increased linearly from 4.6 × 104 to 1.7 × 105 n/s.