ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 81 | Number 2 | February 2025 | Pages 161-178
Research Article | doi.org/10.1080/15361055.2024.2352660
Articles are hosted by Taylor and Francis Online.
For the design of the liquid-metal blanket in a fusion reactor, numerical calculations have been carried out on liquid-metal magnetohydrodynamic flows in rectangular ducts with sudden contractions. Conservation equations of fluid mass and fluid momentum and the Poisson equation for electrical potential have been solved numerically. The numerical calculations have been conducted for a Hartmann number of ~10 000; a Reynolds number of ~10 000; and contraction ratios (CRs) of 2, 3, and 4. The pressure loss through the contraction has been estimated by the loss coefficient ζ divided by the interaction parameter N, i.e. ζ/N. The loss coefficient ζ/N through the contraction parallel to the magnetic field is much larger than that through the corresponding contraction perpendicular to the magnetic field. The loss coefficient ζ/N increases consistently with the CR and does not change very much with N. While ζ/N also does not change very much with the wall conductance ratio for the contraction parallel to the magnetic field, ζ/N increases gradually with the wall conductance ratio for the contraction perpendicular to the magnetic field.