ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC posts hearing request notice for Belews Creek ESP application
An opportunity to request an adjudicatory hearing for Duke Energy Carolinas’ early site permit (ESP) application for the Belews Creek site in Stokes County, N.C., has been announced by the Nuclear Regulatory Commission. The notice of the opportunity was published February 9 in the Federal Register. The deadline to file a request for a hearing or petition for leave to intervene is April 10, 2026.
Matthew S. Parsons, Carli S. Smith, Camilo Jaramillo-Correa, Jean Paul Allain
Fusion Science and Technology | Volume 80 | Number 6 | August 2024 | Pages 715-723
Research Article | doi.org/10.1080/15361055.2023.2240200
Articles are hosted by Taylor and Francis Online.
The diagnosis of plasma-facing components in a fusion environment is challenging due to the limited number of measurement techniques that have been developed for in situ surface analysis. In this work, we assess the feasibility of using neutron reflectometry (NR) for the in situ diagnosis of deuterium accumulation in tungsten and dispersion-strengthened tungsten alloys. TRIM is used to simulate deuterium implantation at different energies to approximate the deuterium depth profiles in these materials in order to calculate the expected measurements from NR for various fluences. Our results suggest that NR should be an effective technique for testing hypotheses about the surface composition of materials under fusion-relevant fluences of deuterium irradiation.