ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Matthew S. Parsons, Carli S. Smith, Camilo Jaramillo-Correa, Jean Paul Allain
Fusion Science and Technology | Volume 80 | Number 6 | August 2024 | Pages 715-723
Research Article | doi.org/10.1080/15361055.2023.2240200
Articles are hosted by Taylor and Francis Online.
The diagnosis of plasma-facing components in a fusion environment is challenging due to the limited number of measurement techniques that have been developed for in situ surface analysis. In this work, we assess the feasibility of using neutron reflectometry (NR) for the in situ diagnosis of deuterium accumulation in tungsten and dispersion-strengthened tungsten alloys. TRIM is used to simulate deuterium implantation at different energies to approximate the deuterium depth profiles in these materials in order to calculate the expected measurements from NR for various fluences. Our results suggest that NR should be an effective technique for testing hypotheses about the surface composition of materials under fusion-relevant fluences of deuterium irradiation.