ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Weidong Ding, Hongguang Yang, Qin Zhan
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 205-214
Research Article | doi.org/10.1080/15361055.2023.2216533
Articles are hosted by Taylor and Francis Online.
The ZrCo-based alloy is considered one of the most promising materials for hydrogen isotope storage in the conceptual design of a fusion reactor. However, there are few systematic studies on the thermodynamic and kinetic models of hydrogen absorption in the new Zr0.8Ti0.2Co alloy. The aim of this study is to computationally derive the general mathematical equations for the thermodynamics and kinetics of hydrogen absorption by Zr0.8Ti0.2Co. In order to obtain the thermodynamic and kinetic data quickly, a constant-flow hydrogen absorption test was used in this study. The thermodynamic performance test revealed that the Zr0.8Ti0.2Co hydrogen absorption transition process was switched from ZrCo to ZrCoHx (metastable phase) and then to ZrCoH3 with an enthalpy of hydrogenation (ΔH) of 66.59 kJ·mol−1 H2, which was obviously lower than that of the ZrCo-based alloy due to the metastable phase.
A mathematical model of the hydrogen absorption coupled with the kinetic equations was established by kinetic process analysis. The hydrogen absorption process was divided into two stages, and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model could fit the two stages of the Zr0.8Ti0.2Co hydrogen absorption well. In the first stage, the JMAK index was n1 = 1.04, activation energy Ea1 = 7594.6 J/mol, and rate coefficient of reaction k01 = 1.958E-4 s−1. While in the second stage, it was n2 = 1.39, Ea2 = 5221 J/mol, and k02 = 9.938E-5 s−1. Based on the range of n values, it can be inferred that both the nucleation and growth mechanisms or the diffusion mechanism were expressed as the rate-limiting steps. Combined with the simulation software, metal hydride bed performance could be better investigated and the structural design could be guided by the obtained mathematical equation of Zr0.8Ti0.2Co hydriding.