ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
M. Sharpe, W. T. Shmayda
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1219-1223
Research Article | doi.org/10.1080/15361055.2022.2147759
Articles are hosted by Taylor and Francis Online.
The interaction of tritium with metal surfaces is the initial step in the overall absorption of tritium by the substrate metal. As a result, limiting the adsorption of tritium to the surface may effectively reduce the quantity of tritium absorbed by a metal when it is in contact with tritium gas. To limit tritium adsorption, many tritium users electroplate gold onto the substrate metal. The gold layer is expected to reduce tritium adsorption, and subsequently absorption, by reducing water adsorption.
The present work shows a comparison between tritium inventories in nonplated 316 stainless steel to the inventories in 316 stainless steel samples electroplated with gold by various commercial vendors and laboratories. Of the various gold-plated samples, only one type of plating shows ~25% reduction in tritium inventory, relative to nonplated steel samples. The degree of tritium absorption appears to be significantly influenced by the porosity, texture, and completeness of the gold layer. Incomplete and/or porous layers lead to increased absorption, while gold layers with smaller surface features lead to similar tritium inventories as nonplated samples. Reduced tritium absorption was observed only for complete gold layers with small surface features.