ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
H. Yamada, K. Ida, S. Murakami, K. Y. Watanabe, E. Ascasibar, R. Brakel, A. Dinklage, J. H. Harris, S. Okamura, F. Sano, U. Stroth, S. Inagaki, K. Tanaka, M. Goto, K. Nishimura, K. Narihara, S. Morita, S. Sakakibara, B. J. Peterson, R. Sakamoto, J. Miyazawa, T. Morisaki, M. Osakabe, K. Toi, N. Tamura, K. Ikeda, K. Yamazaki, K. Kawahata, O. Kaneko, N. Ohyabu, A. Komori, O. Motojima, LHD Experimental Group
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 82-90
Technical Paper | Stellarators | doi.org/10.13182/FST04-A543
Articles are hosted by Taylor and Francis Online.
New stellarator experiments have been launched since the last compilation of the international stellarator database in 1995. Parameter regimes have been extended by Large Helical Device (LHD), and a variety of improved modes have been found since then. The revision of the international stellarator database has been initiated, driven by these emerging interests and by the requirements for a reactor assessment. Some provisional issues are discussed. An understanding of configurational effects is a prerequisite to the derivation of a unified scaling. Differences in magnetic geometry are influential in characterizing energy confinement. The results from the magnetic axis and elongation scans in LHD are highlighted. Comparison with tokamak confinement is also addressed. The revision of the database is in progress, and this paper is an interim report.