ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Gerald Kamelander, Geert Weimann, Luca Garzotti, Xavier Litaudon, Didier Moreau, Bernard Pégourié
Fusion Science and Technology | Volume 45 | Number 4 | June 2004 | Pages 558-566
Technical Paper | doi.org/10.13182/FST04-A530
Articles are hosted by Taylor and Francis Online.
The paper reports on simulation of pellet-fueled plasmas in a fusion reactor. The simulations have been performed by means of the ASTRA transport code. We have studied physical modeling of pellet injection as well as the numerical conditions to resolve pellet injection correctly. As a first step the essential mechanisms for density control have been studied based on simplified assumptions with a generic source of additional heating. The experience gained has been used to simulate advanced scenarios including internal transport barriers. It has been confirmed that it is possible to drive the plasma of a next-generation tokamak into a high-Q regime and to maintain it in a steady-state regime. Nevertheless, the pellet injection parameters required are rather demanding and imply a significant technological improvement of pellet injectors. Those investigations represent an improvement of simulations done earlier with a control of the central density at constant profile.