ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Bor Kos, Georgeta Radulescu, Robert Grove, Rosaria Villari, Paola Batistoni, JET Contributors
Fusion Science and Technology | Volume 79 | Number 3 | April 2023 | Pages 284-304
Technical Paper | doi.org/10.1080/15361055.2022.2129182
Articles are hosted by Taylor and Francis Online.
Current experimental fusion systems and conceptual designs of fusion pilot plants (FPPs) are growing in complexity and size. Several radiation metrics are crucial to the safe operation of fusion machines, including neutron flux streaming through openings and the shutdown dose rate (SDDR). Most current designs of advanced experimental fusion systems—and the most probable candidates for FPPs—are based on the tokamak concept, which is prone to neutron streaming through the myriad openings needed for diagnostic and support systems. SDDR is caused by decay gamma rays from radionuclides that become activated by neutrons during the operation of a fusion system that use deuterium-deuterium (DD), tritium-tritium, or deuterium-tritium plasma. Because computational tools have become essential for determining these radiation metrics, they must be validated against reliable and applicable experimental data. Experiments at the Joint European Torus (JET) provide a unique source of experimental data for validating computational tools and nuclear data used to determine SDDR and neutron fluxes in streaming-dominated geometries. This paper presents the comprehensive analysis of the high-performance DD JET SDDR, and streaming experiments performed using Oak Ridge National Laboratory (ORNL) fusion workflows. The computational results were compared with experimental results that consist of online SDDR measurements with ionization chambers and neutron fluence streaming measurements using thermoluminescent detectors. The ratio of calculated-to-experimental SDDR values ranges from 0.6 to 2.5, and the streaming results range from 0.5 to 8.0. Future work will include analyzing the JET 2021 DTE2 campaign alongside the integration of the Shift Monte Carlo transport code into all ORNL fusion neutronics workflows.