ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
B. M. Angelini, M. L. Apicella, G. Buceti, C. Centioli, F. Crisanti, F. Iannone, G. Mazza, G. Mazzitelli, M. Panella, V. Vitale, The FTU Team
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 437-458
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A524
Articles are hosted by Taylor and Francis Online.
Some specific points of the Frascati Tokamak Upgrade (FTU) operation are presented for plasma performance as well as for the machine availability and the development of new tools needed to operate in a complex scenario needed for tokamak research. The different techniques adopted for wall conditioning of the FTU are reviewed. Plasmas with low Zeff have been achieved including those at low density and high additional heating power. The obtained experimental results are discussed in terms of better operation and plasma performance achieved. As with any other large - and thus long-lasting - experiments, a mixture of old and new technological solutions inserted in an open source framework characterizes the FTU data control and acquisition systems. We give some information on the original architecture and try to detail its current state. The high level of reliability presently achieved is discussed.