ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
D. Frigione, L. Pieroni, P. Buratti, E. Giovannozzi, M. Romanelli, B. Esposito, M. Leigheb, L. Gabellieri
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 339-349
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A518
Articles are hosted by Taylor and Francis Online.
High-density plasmas (no ~ 8 × 1020 m-3) achieving steady improved core-confinement have been obtained in the Frascati Tokamak Upgrade (FTU) up to the maximum nominal toroidal field (8 T) by deep multiple pellet injection. These plasmas exhibit also high purity, efficient electron-ion coupling, and peaked density profiles sustained for several energy confinement times. Neutron yields in excess of 1 × 1013 n/s are measured, consistent with the reduction of the ion transport to neoclassical levels. Improved performance is associated with sawtooth stabilization that occurs when the pellet penetrates close to the q = 1 surface. In this regime, impurity accumulation can be prevented if a slow sawtooth activity is maintained. Experiments aimed at obtaining radiation-improved modes at high field have also been carried out using neon injection. The observed increase of the average density, with respect to the reference discharge, is significantly larger than the contribution of Ne. The neutron yield increases also by a factor of 3 to 6, and the energy confinement time increases by a factor up to 1.4.