ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
D. Frigione, L. Pieroni, P. Buratti, E. Giovannozzi, M. Romanelli, B. Esposito, M. Leigheb, L. Gabellieri
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 339-349
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A518
Articles are hosted by Taylor and Francis Online.
High-density plasmas (no ~ 8 × 1020 m-3) achieving steady improved core-confinement have been obtained in the Frascati Tokamak Upgrade (FTU) up to the maximum nominal toroidal field (8 T) by deep multiple pellet injection. These plasmas exhibit also high purity, efficient electron-ion coupling, and peaked density profiles sustained for several energy confinement times. Neutron yields in excess of 1 × 1013 n/s are measured, consistent with the reduction of the ion transport to neoclassical levels. Improved performance is associated with sawtooth stabilization that occurs when the pellet penetrates close to the q = 1 surface. In this regime, impurity accumulation can be prevented if a slow sawtooth activity is maintained. Experiments aimed at obtaining radiation-improved modes at high field have also been carried out using neon injection. The observed increase of the average density, with respect to the reference discharge, is significantly larger than the contribution of Ne. The neutron yield increases also by a factor of 3 to 6, and the energy confinement time increases by a factor up to 1.4.