ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
J. Mishra, R. Gangradey, P. Nayak, S. Mukherjee
Fusion Science and Technology | Volume 78 | Number 3 | April 2022 | Pages 211-219
Technical Paper | doi.org/10.1080/15361055.2021.1985905
Articles are hosted by Taylor and Francis Online.
Based on the ideal gas gun theory (IGT) approximation, an analytical study of solid hydrogen pellet motion in a gas gun–type pellet injector has been performed. A parametric investigation has been conducted to study the pellet speed dependence on the gun characteristics and the propellant conditions. The calculations have been verified by applying various experimental data reported from the literature. Experimental results are within 70% to 90% of the ideal IGT and are in line with global predictions. Calculations indicate that the speed of the pellet has a strong dependence on the propellant pressure and its mass, and a weak dependence on the length of the gun barrel. In addition, the effects of shock waves due to the sudden opening of the propellant valve and some nonideal effects, such as the effect of friction at the propellant pellet–wall interface, have been studied. The results of the calculations have been verified by applying them to the experimental results.