The replacement of the burning of fossil fuels in power plants with other forms of clean energy, for example, that of a tokamak fusion reactor employing the deuterium-tritium cycle, like ITER, would contribute enormously to the mitigation of climate change. Unfortunately, for such a type of fusion reactor, we expect the neutrons, which carry 80% of the fusion power with energies seven times larger than those of neutrons of fission reactors, to cause serious radiation damage with possible fracture of the blanket modules and the reactor wall. Hence, before contemplating the use of tokamaks for replacing fossil fuels of conventional power plants, we need a thorough investigation of the damage caused by neutrons in high-power tokamak reactors. Unfortunately, ITER will not provide any exhaustive information since it is neither a high power density tokamak nor a reactor. However, a rise in toroidal magnetic field by a factor of 2 would bring the fusion power of ITER to 8 GW and allow an investigation of the damage caused by neutrons to internal components and the reactor wall.