This paper is devoted to discussing the technical characteristics of pulsed plasma-focus (PF) generators and their features as fusion reactors as an alternative for stationary thermonuclear installations. First, the authors present results of experimental data obtained on the Pulse Plasma Accelerator–30 (PPA-30) and dense PF-4 devices. The pulse discharge current and jumped parameters and the energy distribution along and across the axis on the 31-kJ (at 30 kV and 69 μF) PPA-30 device were determined. It is indicated that plasma already is completely ionized at the kilo-ampere range and its inductance is small. The maximum energy density of the plasma was equal to 230 J/cm2 and a macrofocusing effect was observed. Second, the emission parameters of the PF-4 device were determinate. The neutron yield was equal to about 107 imp/shot. The variation of the axial and radial neutron yield was observed. Further, the problems of neutron yield on PF devices and options for the development of a fusion reactor taking into account other technical capabilities of PF are discussed. It is proposed to develop the design of PF in such a way as to take into account the peculiarities of the interaction of particles with an electric and magnetic field. In this situation, the important indicator is not the temperature of the plasma, but the geometry of the electrode system to provide a directed flow of particles.