ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Y. P. Zhang, D. Mazon, J. Zhang, P. F. Zhang, P. Malard, H. B. Xu, J. Zhou, Y. Peysson, X. L. Zou, J. W. Yang, G. L. Yuan, M. Isobe, X. Y. Song, X. Li, Yi Liu, Z. B. Shi, M. Xu, X. R. Duan, the HL-2A Team
Fusion Science and Technology | Volume 77 | Number 1 | January 2021 | Pages 1-8
Technical Paper | doi.org/10.1080/15361055.2020.1829457
Articles are hosted by Taylor and Francis Online.
A hard X-ray pinhole camera system has been recently built at the HL-2A tokamak to measure the evolution of space-time distribution of fast electrons in the energy range of 20 to 200 keV. The camera is mainly composed of a fan-shaped detector array, an observation window, a pinhole mechanism, and a data processing system. The detector array consists of 21 CdTe detectors that are arranged in a poloidal section. The camera views the plasma perpendicularly through an observation window mounted in a horizontal port on the equatorial plane. The data processing is implemented by a fast spectrometry based on field-programmable gate array technology. The time and space resolution of the camera can reach 2 to 16 ms and 2 cm, respectively. During the HL-2A experiment campaign in 2018, measurements of fast electrons produced by lower hybrid waves using the camera were successfully performed. The performance of the camera and the first experimental results with some discussions are presented in this paper.