ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Y. P. Zhang, D. Mazon, J. Zhang, P. F. Zhang, P. Malard, H. B. Xu, J. Zhou, Y. Peysson, X. L. Zou, J. W. Yang, G. L. Yuan, M. Isobe, X. Y. Song, X. Li, Yi Liu, Z. B. Shi, M. Xu, X. R. Duan, the HL-2A Team
Fusion Science and Technology | Volume 77 | Number 1 | January 2021 | Pages 1-8
Technical Paper | doi.org/10.1080/15361055.2020.1829457
Articles are hosted by Taylor and Francis Online.
A hard X-ray pinhole camera system has been recently built at the HL-2A tokamak to measure the evolution of space-time distribution of fast electrons in the energy range of 20 to 200 keV. The camera is mainly composed of a fan-shaped detector array, an observation window, a pinhole mechanism, and a data processing system. The detector array consists of 21 CdTe detectors that are arranged in a poloidal section. The camera views the plasma perpendicularly through an observation window mounted in a horizontal port on the equatorial plane. The data processing is implemented by a fast spectrometry based on field-programmable gate array technology. The time and space resolution of the camera can reach 2 to 16 ms and 2 cm, respectively. During the HL-2A experiment campaign in 2018, measurements of fast electrons produced by lower hybrid waves using the camera were successfully performed. The performance of the camera and the first experimental results with some discussions are presented in this paper.