ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Jae-Yoo Choi, Masoomeh Ghasemi, Min-Ho Chang, Hyunchul Ju
Fusion Science and Technology | Volume 76 | Number 6 | August 2020 | Pages 739-748
Technical Paper | doi.org/10.1080/15361055.2020.1777672
Articles are hosted by Taylor and Francis Online.
In this study, a three-dimensional transient metal hydride model is applied to two different depleted uranium (DU) bed designs. One bed is designed to contain 1.86 kg DU for a hydrogen isotope storage capacity of 70 g, and it is loaded with copper foam to enhance internal heat transfer. The other bed is designed to contain 5.26 kg DU for a hydrogen isotope storage capacity of 200 g, and it uses copper fins to enhance internal heat transfer. A numerical study is conducted to analyze the dehydriding characteristics of two different DU bed designs. A parallel computing methodology is used to effectively reduce the computational turnaround time involved for full-scale DU bed geometries. The detailed simulation results show the evolution of temperature and hydrogen-to-metal atomic ratio contours at different hydrogen desorption stages and reveal the different DU dehydriding behaviors of the two DU beds. In sum, the present work elucidates the effects of key bed design parameters and helps identify optimal DU bed design strategies to effectively charge and discharge hydrogen isotopes.