ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
S. D. Bondarenko, I. A. Alekseev, O. A. Fedorchenko, T. V. Vasyanina
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 690-695
Technical Paper | doi.org/10.1080/15361055.2020.1766275
Articles are hosted by Taylor and Francis Online.
The multifunctional Tritium Removal Facility (TRF) has been designed for the heavy water research reactor PIK in Russia. Along with the extraction of tritium and protium from a heavy water reflector of the reactor, the TRF provides the processing of heavy water waste and the production of tritium-free heavy water. The combined electrolysis catalytic exchange process and hydrogen cryogenic distillation are used at the TRF. A number of investigations have been made to obtain data for the TRF design. At present, the facility is under construction and a detailed design is being completed. The possibility of processing heavy water waste to produce heavy water simultaneously with the extraction of tritium and protium from the heavy water reactor will improve the functionality and economic efficiency of the TRF. The basic technological scheme of the facility and the main modes of its operation are presented along with the progress of the construction of the facility building and engineering systems.