ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. Sharpe, W. T. Shmayda, K. Glance
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 642-648
Technical Paper | doi.org/10.1080/15361055.2020.1740558
Articles are hosted by Taylor and Francis Online.
The data collected in the present work extend the measured phase diagram for palladium hydride and palladium deuteride to a region that has been sparsely reported in open literature. Absorption isotherms were measured using a 2.5-g bed of palladium powder at temperatures between 130 and 393 K and pressures less than 1.3 × 105 Pa. Such low-pressure and low-temperature measurements are useful for characterizing palladium beds used for tritium pumping and storage. For tritium storage, pressures are kept below a few millibars for safety reasons. Low temperatures increase the tritium storage capacity of palladium.
The measured absorption isotherms show the well-documented, two-phase behavior for this system: two solubility regions and a mixed, hydride-forming region. The isotherms show that an increased quantity of hydride is formed at lower temperatures, as marked by an increase in the hydride-forming region. This region exceeds hydrogen-to-metal ratios of 0.75 for T ≤ 273 K. Equilibrium pressures in the mixed region decrease with decreasing temperatures until a critical temperature is reached for each isotope. Below these critical temperatures, the rate of pressure decrease with decreasing temperature is significantly reduced. This change in trend suggests hydrogen isotopes are adsorbed onto the palladium surface, rather than forming a hydride. Using the equilibrium pressures recorded at temperatures between 236 and 393 K for protium and between 211 and 354 K for deuterium, the van’t Hoff constants were calculated to be A = −36 ± 1 kJ/mol and B = 88 ± 3 J/K for protium and A = −32 ± 2 kJ/mol and B = 88 ± 9 J/K for deuterium. These constants agree favorably with literature in the range where the temperatures of the measured isotherms overlap.