ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
S. S. Ananyev, A. Yu. Dnestrovskij, A. S. Kukushkin, A. V. Spitsyn, B. V. Kuteev
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 503-512
Technical Paper | doi.org/10.1080/15361055.2020.1718855
Articles are hosted by Taylor and Francis Online.
The fuel cycle (FC) model FC-FNS is used for the calculation of hydrogen isotope flows in the fuel systems of the DEMO-FNS fusion neutron source (FNS) based on a tokamak with parameters R/a = 3.2 m/1 m, B = 5 T, Ipl = 4 to 5 MA, PNBI = 30 MW, РECR = 6 MW, and deuterium-tritium fusion power Pf = 40 MW. The FC-FNS model includes joint simulation of the gas, solid-state, and plasma flows of the fuel mixtures in the areas of the core and near-wall plasma when neon admixture is injected into the divertors. The basic principles of particle balance formation in the plasma and FC systems are described in the paper. In the process of fueling mode optimization, the requirements for productivity of the key FC systems containing the largest amount of T have been formulated. The FC configuration with the minimum tritium reserve (<2 kg) and the shortest processing time is selected.