ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Anisia Mihaela Bornea, Marius Zamfirache, George Ana, Liviu Stefan, Ovidiu Balteanu, Ciprian Bucur
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 384-391
Technical Paper | doi.org/10.1080/15361055.2020.1712991
Articles are hosted by Taylor and Francis Online.
In order to ensure the efficient management of radioactive waste in the form of tritiated light water and tritiated heavy water with low tritium and/or deuterium concentration, Institute for Cryogenics and Isotopic Technologies (ICSI) Rm.Valcea is developing an experimental demonstration facility based on the combined electrolysis catalytic exchange (CECE) separation process. The facility is completing the experimental pilot plant for tritium and deuterium separation—the installation support for heavy water detritiation from the CANDU reactors in Romania.
The concentration of deuterium from low-concentrated waste extends the recovery area from below 1% D2O/(D2O + H2O), corresponding to the minimum threshold of the Cernavoda Upgrading Facility, thus contributing to the reduction of heavy water losses. At the same time the tritium recovery process will be increased.
The experimental installation has an innovative solution that reconfigures a proton exchange membrane (PEM) electrolyzer for tritium qualification thereby improving equipment specific to hydrogen isotope separation processes.
This paper presents the experimental installation conceptual scheme, including the measurement and control elements. A modeling software for simulation of the nonsteady-state regime of the CECE separation process, specific to the deuterium/tritium isotopes concentration process in the liquid phase, is also presented. The mathematical model integrates the characteristic equations of separation by liquid phase catalytic exchange (LPCE), the mathematical representation of isotope separation by electrolysis, and the water distillation from the oxygen purification process in a nonstationary regime.
An analysis is presented for the concentration of various low-concentrated tritium waste. We also investigate the influence of the electrolyzer liquid holdup and the isotopic separation column holdup on concentrated water production.