ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
R. Koch
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 183-192
Technical Paper | Plasma and Fusion Energy Physics - Plasma Heating and Current Drive | doi.org/10.13182/FST04-A482
Articles are hosted by Taylor and Francis Online.
The additional heating of plasmas by injection of fast neutrals - or Neutral Beam Injection (NBI) - is reviewed. First, the limitations of ohmic heating in tokamaks and the other motivations for using additional heating in fusion machines are discussed. Next, the principle of operation of neutral beam injectors, and state of the art, are outlined. Positive-ion (PNBI) and negative-ion (NNBI) based concepts are discussed. Next, the physical processes by which the beam transfers energy to the plasma, namely ionisation and slowing-down are described. For both, an elementary theory is given and the comparison with experimental results is made. Applications of NBI to heating, current drive and rotation drive are reviewed. The prospects of NBI for ITER are commented.