ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
D. van Houtte
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1064-1075
Technical Paper | doi.org/10.1080/15361055.2019.1658042
Articles are hosted by Taylor and Francis Online.
The systems engineering process starts with the discovery of the real issues that need to be resolved and the identification of failures that are the most probable or/and have the highest negative impact during the life cycle of a project. Systems engineering involves finding mitigations to these most critical problems. This logic is fully followed in reliability, availability, maintainability, inspectability (RAMI) engineering. Although this area is at its beginning in fusion technologies, a few years ago the ITER Organization developed an approach to assess the RAMI requirement of systems. As an example of what a RAMI analysis can bring to the maintainability and thus operational availability of a nuclear fusion facility like ITER, the availability of the cask and plug remote handling system in charge of handling of port plugs and their moving between the port cells to the hot cell facility is addressed in the case of diagnostic equatorial port plugs.