ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
D. van Houtte
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1064-1075
Technical Paper | doi.org/10.1080/15361055.2019.1658042
Articles are hosted by Taylor and Francis Online.
The systems engineering process starts with the discovery of the real issues that need to be resolved and the identification of failures that are the most probable or/and have the highest negative impact during the life cycle of a project. Systems engineering involves finding mitigations to these most critical problems. This logic is fully followed in reliability, availability, maintainability, inspectability (RAMI) engineering. Although this area is at its beginning in fusion technologies, a few years ago the ITER Organization developed an approach to assess the RAMI requirement of systems. As an example of what a RAMI analysis can bring to the maintainability and thus operational availability of a nuclear fusion facility like ITER, the availability of the cask and plug remote handling system in charge of handling of port plugs and their moving between the port cells to the hot cell facility is addressed in the case of diagnostic equatorial port plugs.