ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
C. Koehly, L. Bühler, C. Mistrangelo
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1010-1015
Technical Paper | doi.org/10.1080/15361055.2019.1607705
Articles are hosted by Taylor and Francis Online.
The water-cooled lead lithium (WCLL) blanket is one of the European concepts for a Demonstration nuclear fusion reactor (DEMO). The spatial distribution of the water-cooling pipes inside the liquid metal blanket breeder zone is a critical issue since efficient heat removal from the liquid metal has to be ensured, avoiding local hot spots in the fluid or in blanket walls. Convective motion, driven by density gradients due to volumetric heat sources in the liquid breeder and heat removal by cooling pipes, is affected by magnetohydrodynamic interactions of the electrically conducting lead lithium with the external magnetic field. For the recent complex design of the DEMO WCLL blanket, prediction of the liquid metal flow is quite difficult. Preliminary numerical and experimental studies are necessary to determine the flow distribution resulting from the combined interaction of electromagnetic forces, buoyancy, and pressure. A test section based on a simplified model geometry supported by preliminary numerical simulations has been designed for experiments in the MEKKA laboratory at the Karlsruhe Institute of Technology and is presented in this paper.