ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Roman Rozenblat, Egemen Kolemen, Florian M. Laggner, Christopher Freeman, Greg Tchilinguirian, Paul Sichta, Gretchen Zimmer
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 835-840
Technical Paper | doi.org/10.1080/15361055.2019.1658037
Articles are hosted by Taylor and Francis Online.
The Thomson scattering (TS) diagnostic on the National Spherical Tokamak eXperiment Upgrade (NSTX-U) has been an essential system for many operational campaigns due to its function of measuring plasma electron density and temperature. Constructive feedback to improve the next plasma discharge, however, has been limited because of in-between shots analysis. Plasma control, therefore, desires a diagnostic system that is real-time capable. This contribution presents the development of software that demonstrates the feasibility of a real-time TS diagnostic system for NSTX-U. The developed software is able to evaluate the electron temperature and density within 2.5 ms.
The overall system requirement is specified by a 60-Hz timing cycle, which is driven by the TS laser pulse rate. The real-time software processes the peak amplitudes of the detected photons, evaluates the electron temperature and density, and then outputs them to an analog output card that is used to interface with the NSTX-U control. The real-time software is implemented in an object-oriented architecture using C++11. C++11 software components include Abstract class, Atomic data types for synchronization, and a Hash data structure. The software application makes use of multiple threads that run concurrently: a thread to acquire the photon peak amplitude and feed a circular buffer, threads to evaluate the electron density and temperatures, and a thread that supplies corresponding output voltages and feeds the output card.
In summary, the new real-time TS system has been proven to meet the 60-Hz system requirement. For this reason, the software implementation was deemed successful. In future NSTX-U campaigns, this diagnostic will be a great asset enabling real-time plasma density and temperature control.