ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Sergey Pestchanyi, Francesco Maviglia
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 647-653
Technical Paper | doi.org/10.1080/15361055.2019.1643684
Articles are hosted by Taylor and Francis Online.
Simulation of divertor target damage during thermal quench of the disruption in the future DEMO tokamak has been performed using the TOKES code. This parametric study includes damage estimation for disruptions of the plasma energy E0 in the DEMO core in the range of 0.4 to 1.3 GJ and of time duration 1 to 2 ms. According to the simulations, the maximum melt depth on the divertor targets is ~80 μm, independent of the energy content in the core. The melted pool maximum area grows from ~20 m2 for 0.4-GJ disruption to ~120 m2 for 1.3-GJ disruption. Maximum erosion depth is 4 μm for 1.3-GJ disruption and decreases to less than 1 μm with decreasing E0. The total quantity of vaporized tungsten ranges from 2 ∙ 1021 to 3 ∙ 1024 atoms for disruptions of 0.4 to 1.3 GJ. An additional parametric study has revealed weak dependence of the results from the characteristic widths λq of the disruptive flux in the scrape-off layer.