ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Sergey Pestchanyi, Francesco Maviglia
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 647-653
Technical Paper | doi.org/10.1080/15361055.2019.1643684
Articles are hosted by Taylor and Francis Online.
Simulation of divertor target damage during thermal quench of the disruption in the future DEMO tokamak has been performed using the TOKES code. This parametric study includes damage estimation for disruptions of the plasma energy E0 in the DEMO core in the range of 0.4 to 1.3 GJ and of time duration 1 to 2 ms. According to the simulations, the maximum melt depth on the divertor targets is ~80 μm, independent of the energy content in the core. The melted pool maximum area grows from ~20 m2 for 0.4-GJ disruption to ~120 m2 for 1.3-GJ disruption. Maximum erosion depth is 4 μm for 1.3-GJ disruption and decreases to less than 1 μm with decreasing E0. The total quantity of vaporized tungsten ranges from 2 ∙ 1021 to 3 ∙ 1024 atoms for disruptions of 0.4 to 1.3 GJ. An additional parametric study has revealed weak dependence of the results from the characteristic widths λq of the disruptive flux in the scrape-off layer.