ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Sergey Pestchanyi, Francesco Maviglia
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 647-653
Technical Paper | doi.org/10.1080/15361055.2019.1643684
Articles are hosted by Taylor and Francis Online.
Simulation of divertor target damage during thermal quench of the disruption in the future DEMO tokamak has been performed using the TOKES code. This parametric study includes damage estimation for disruptions of the plasma energy E0 in the DEMO core in the range of 0.4 to 1.3 GJ and of time duration 1 to 2 ms. According to the simulations, the maximum melt depth on the divertor targets is ~80 μm, independent of the energy content in the core. The melted pool maximum area grows from ~20 m2 for 0.4-GJ disruption to ~120 m2 for 1.3-GJ disruption. Maximum erosion depth is 4 μm for 1.3-GJ disruption and decreases to less than 1 μm with decreasing E0. The total quantity of vaporized tungsten ranges from 2 ∙ 1021 to 3 ∙ 1024 atoms for disruptions of 0.4 to 1.3 GJ. An additional parametric study has revealed weak dependence of the results from the characteristic widths λq of the disruptive flux in the scrape-off layer.