ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Yasuyuki Ogino, Keisuke Mukai, Juro Yagi, Satoshi Konishi
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 487-492
Technical Paper | doi.org/10.1080/15361055.2019.1611343
Articles are hosted by Taylor and Francis Online.
Measurement of neutron flux and energy spectrum profile inside the blanket is required for fusion blanket design. An experiment using an imaging plate and activation materials (Dy, In, and Au) was performed to measure spatial distribution of neutron flux. Neutrons were generated by a discharge-type compact fusion neutron source whose neutron production rate was more than 107 n/s. A linearity between the total number of active nuclides made by neutron and photo-stimulated luminescence per area on the activation material was confirmed for three orders of magnitude. The relationships between the total number of decay of activation in the materials and the flux of the neutron in a simplified breeder assembly was measured and compared with the computation by MCNP.