ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
S. Sandri, G. M. Contessa, M. Guardati, M. Guarracino, R. Villari
Fusion Science and Technology | Volume 75 | Number 5 | July 2019 | Pages 345-351
Technical Paper | doi.org/10.1080/15361055.2019.1608097
Articles are hosted by Taylor and Francis Online.
An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular, considering the radioactivity and the radioactive waste produced in a nuclear fusion plant, the component materials for the plant could be selected in order to limit the decay period, making recycling possible in a new reactor after about 100 yr from the beginning of decommissioning. To achieve this and other pertinent goals, many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and worker exposure are critical aspects of these facilities due to the high-flux, high-energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion, and other related issues pose a real challenge to demonstrating that these devices are safer than nuclear fission facilities. In Italy, for the past 30 yr, a limited number of fusion facilities have been constructed and operated, mainly at the ENEA Frascati Center, where a new one, the Italian Divertor Tokamak Test Facility (DTT), is now under development. The radiation protection approach, addressed by national licensing requirements, shows that respecting the constraints for worker exposure to ionizing radiation is not always straightforward. In the current analysis the main radiation protection issues encountered in the Italian fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for this kind of device is outlined and compared with that of other European countries.
The following aspects are considered throughout the current study: description of the installation, plant, and systems; suitability of the area; buildings and structures; radioprotection structures and organization; exposure of personnel; accident analysis and relevant radiological consequences; and radioactive waste assessment and management.
In conclusion, the analysis points out the need for special attention to the radiological exposure of workers in order to demonstrate at least the same level of safety as that reached at nuclear fission facilities.