ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
R. A. London, R. L. McEachern, B. J. Kozioziemski, D. N. Bittner
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 245-252
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A457
Articles are hosted by Taylor and Francis Online.
A computational model is presented for infrared heating of frozen hydrogen layers in cryogenic ICF capsules. The model contains linked ray trace and heat conduction programs. The conduction part of the model has been validated with a cryogenic hohlraum experiment without infrared irradiation. The complete model has been used to design and analyze experiments on infrared layering of D2 in a hohlraum. The modeling provides an understanding of how to control the long scale length ice thickness perturbations by varying the infrared power balance and beam pointing. Based on the confidence developed in the model by comparison to experiment, design calculations are presented for IR layering systems for ICF ignition targets.