ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
G. Moll, S. Charton
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 233-244
Technical Paper | Target Fabrication | doi.org/10.13182/FST45-233
Articles are hosted by Taylor and Francis Online.
The temperature of the cryogenic target inside the hohlraum has been studied with a computational fluid dynamics code (FLUENT). Specific models have been developed and used for both thermal and hydrodynamic calculations.With thermal calculations only, we first have found the optimum heat flux required to counteract the effect of the laser entrance windows. This heat flux is centered on the hohlraum wall along the axis of revolution. With this heat flux, the temperature surface profiles of the capsule and the DT ice layer have been significantly reduced. Second, the sensitivity of the target temperature profiles (capsule and DT layer) relatively to capsule displacement has been determined. Thirdly, the effect of the shield extraction (shield surrounding the cryogenic structure) has been studied and has indicated that the target lifetime before the laser shot is less than 1s. Meanwhile, with hydrodynamic simulations, we have investigated the surface temperature profiles alteration due to He and H2 mixture convection within the hohlraum.In order to find out the variations between different configurations, results of these studies are given with seven significant digit outputs. Those results only indicate a trend because of the material's properties incertitude and the code approximation.